

Synthesis of Poly(4,4-dialkyl-cyclopenta[2,1-b:3,4-b']dithiophene-alt-2,1,3-benzothiadiazole) (PCPDTBT) in a **Direct Arylation Scheme**

Sebastian Kowalski¹, Sybille Allard¹, Kirill Zilberberg², Thomas Riedl², Ullrich Scherf¹

- ¹ Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal, Gaußstrasse 20, D-42097 Wuppertal, Germany
- ² Institute of Electronic Devices, Bergische Universität Wuppertal, Rainer-Gruenter-Straße 21, D-42119 Wuppertal, Germany

Introduction

Recently, direct (hetero)arylation polycondensation (DAP) has attracted increasing interest in the field of conjugated polymer synthesis. DAP allows the formation of aryl-aryl bonds between one unsubstituted and one dihaloarylene monomer without use of organometallic intermediates as arylboronic esters, aryl stannanes or Grignard-compounds. Here we present the first synthesis of poly(4,4-dialkyl-cyclopenta[2,1-b:3,4-b´]-dithiophene-alt-2,1,3-benzothiadiazole) (PCPDTBT) in a DAP scheme starting from 4,4-di(2-ethylhexyl)cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) and 4,7-dibromo-2,1,3-benzothiadiazole as monomers.[1]

Synthesis of PCPDTBT

Summary of polycondensation reactions^a:

	Pd(OAc) ₂	PCy ₃ -HBF ₄					
entry	(mol %)	(mol %)	solvent	time (h)	M _n (g/mol)	M_w/M_n	yield (%)
P1	4	8	DMAc	72	24600	3.91	80
P2	4	8	toluene	72	2400	1.56	12
P3	2	4	DMAc	72	22000	3.26	68
P4	4	none	DMAc	72	36800	3.28	42
P5	4	8	DMAc	24	19700	2.78	61
P6	4	none	DMAc	24	40300	3.48	70

^a Reactions were carried out at 110 °C using Pd(OAc)₂ as catalyst, PCy₃·HBF₄ as ligand and K₂CO₃ (1.5 equiv.) as base in DMAc (10 ml). b Estimated by gel permeation chromatography (GPC) with polystyrene calibration. c The yield is based on the amounts of high molecular weight dichloromethane and chloroform fractions after solvent extraction.

Catalyst screening^d:

catalyst	time (h)	M _n [g/mol]	yield (%)
Pd(OAc) ₂	24	40300	70
Pd(dba) ₂	72	_	0
Pd ₂ (dba) ₃ -CHCl ₃	72	-	0
Herrmann's cat.	72	19100	75

d Reactions were carried out at 110 °C using 4 mol % catalyst and 1.5 equiv. K₂CO₃ as base in DMAc.

Properties of PCPDTBT

The UV/Vis and PL spectra of PCPDTBT made by DAP and in a standard Stille-type coupling show a slight blue shift for the DAP product, probably caused by misconnections of CPDT units in 3- or 6-position (as indicated by NMR spectroscopy).

UV/Vis and PL spectra of two PCPDTBT batches made by DAP or Stille-type coupling (solvent: chloroform, exitation wavelength: 620 nm).

Comparison of aromatic signals of two PCPDTBT batches made by DAP Stille-type (top) and coupling (bottom).

¹H-NMR spectrum of PCPDTBT made by direct arylation polycondensation (600 MHz, in C₂D₂Cl₄, 80 °C).

Device characteristics of inverted bulk heterojunction organic solar cells (OSCs):

I/V-characteristics of inverted OSCs with PCPDTBT as donor and PC₇₀BM as acceptor (solvent: chlorobenzene, processing additive: octane-1,8-dithiol).

PCPDTBT:PC ₇₀ BM -	PCE	V_{oc}	J_{sc}	FF
inverted OSCs	[%]	[%]	[mA/cm ²]	[%]
PCPDTBT - Stille-type	3.8	0.57	14.2	46.6
PCPDTBT - direct arylation	4.0	0.60	14.5	45.9

vs. logarithmic Illumination In(I) intensity of inverted OSCs based on PCPDTBT/PC₇₀BM prepared by (a) Stille-type coupling and (b) by DAP. The slope S of V_{oc} vs. ln(I) is close to kT/q indicating the absence of trap assited recombination due to impurities or defects.^[2-4] Only for increased amounts of processing additive ODT OSCs based on Stille-type PCPDTBT show an increased S value.

Conclusion:

Direct arylation polycondensation is a new and efficient method for high molecular weight PCPDTBT synthesis including low catalyst loadings, less reaction steps (green chemistry), and without use of expansive or toxic boronic acids/esters or stannyl compounds.

- [2] S.R. Cowan, W. L. Leong, N. Banerji, G. Dennler, A. J. Heeger, *Adv. Funct. Mater.* **2011**, *21*, 3083-3092.
- [3] L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, *Appl. Phys. Lett.* 2005, 86, 123509.
- [4] M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, Appl. Phys. Lett. 2007, 91, 263505.